
King Fahd University of Petroleum and
Minerals

Department of Computer Engineering (COE)
COE 405

Design and Modeling of Digital Systems

High-Speed Parallel HDL
Implementation of K-Means

Clustering for Image Segmentation

Semester 201

Ahmed Alharbi 201636500
Hamza Alsharif 201642320

Dr Mohammed Elrabaa

Contents

1 Brief Overview 2

2 Algorithm 2

3 Datapath Diagrams 6

4 Verilog Modules 10
4.1 Cluster Machine . 10
4.2 BEngine . 10
4.3 Cluster Engine . 10
4.4 Distance Comparator . 10
4.5 Sum Unit . 10
4.6 Mean Divider . 11
4.7 Mean File . 11
4.8 Pixel-to-Cluster . 11

5 Results 11

1

1 Brief Overview

The idea behind our design is that it uses a multi-engine, multi-thread parallel processing approach. Each engine corresponds
to 16 threads that represent the means and K threads will be processing and enabled depending on the user’s K input. In
principle, we do this by only considering the enabled means when clustering the pixels. For our current configuration we are
using 10 engines. First we store 5 individual parts of the input image into 10 separate dual-port (we only use the dual read
port) memory blocks that each correspond to 2 engines. This allows us to process the whole image in chunks of a 10th of the
image size, all in parallel. A thread takes in the pixels as inputs and accumulates their RGB values, but only if that thread
is enabled. The accumulated thread values are then sent to the sum unit where they are all added together to get a final
accumulated value for the clusters. These resultant centroid accumulated values are then divided by the number of pixels
assigned to each of the respective clusters. The division is done through a set of ipcore generated dividers available in Xilinx.
The new mean values are then compared with the previous mean values to see if the centroid means have stabilised. In our
design we use a maximum allowed difference value of 6, meaning that if the new mean value is within an error range of ±6
of the previous mean value then it is considered to be stable. Once all of the mean values have stabilised the circuit enters
the outputting stage. In this stage, the image pixels are compared with the centroid means and the closest mean in terms of
Manhattan distance is outputted in place of that pixel. The output pixels are also written to a file. After the outputs have
been produced, the circuit is considered to have finished its operation. We believe that this parallel approach will give us a
huge boost in performance.

2 Algorithm

The algorithm shown below is a generalised sequential implementation of the K-Means clustering algorithm on hardware. Our
actual algorithm involves a module hierarchy and a parallel design which was not easy to represent using sequential-based
code. For a more accurate representation of how our circuit works see the ASM diagram.

1 // Note: The algorithm has been written to be closer to verilog-style code even though it does not

2 // necessarily match its syntax since it is supposed to be pseudo-code

3

4 Core { // these operations happen in all of the enabled cores

5 if (reset) {

6 All registers and counters = 0;

7 goto Sleep;

8 }

9

10 Sleep:

11 if (Enable)

12 goto ReadPixel;

13

14 ReadPixel:

15 Pixel = PixelIn;

16 goto CalculateDistance;

17

2

18 CalculateDistance:

19 Distance = absolute_value(Pixel[23:16] - Mean[23:16]) + absolute_value(Pixel[15:8] - Mean[15:8]) +

20 absolute_value(Pixel[7:0] - Mean[7:0]);

21

22 if (CompareOnly) // if the core only needs to perform a distance comparison without updating its mean value

23 goto ReadPixel;

24 else if (isClosest) // if this core's mean is the closest to the pixel

25 goto GroupPixel;

26 else

27 goto Wait;

28

29 Wait:

30 remain idle and wait until the closest core to the pixel to perform its processing;

31

32 if (UpdateMean)

33 goto UpdateMean;

34 else

35 goto ReadPixel;

36

37 GroupPixel:

38 RedAccumulator = RedAccumulator + Pixel[23:16];

39 GreenAccumulator = GreenAccumulator + Pixel[15:8];

40 BlueAccumulator = BlueAccumulator + Pixel[7:0];

41 PixelCounter = PixelCounter + 1;

42

43 if (UpdateMean) // finished reading all pixels and ready to update mean

44 goto UpdateMean;

45 else

46 goto ReadPixel;

47

48 UpdateMean:

49 BusyDivide = 1; // this will be a status signal from the divider indicating that it has finished

50 Mean = RGB Accumulators / PixelCounter; // once the division has finished BusyDivide will become 0

51

52 if (!BusyDivide && PreviousMean == Mean)

53 MeanStable = 1;

54 else if (!BusyDivide && PreviousMean != Mean)

55 MeanStable = 0;

3

56 goto CoreReady;

57

58 CoreReady:

59 Mean = PreviousMean; // mean value is now constant

60

61 if (AllMeansStable) // if all of the means from all cores have stabilized

62 goto CoreReady;

63 else

64 goto ReadPixel; // it might be the case that this mean core has stabilized but other mean cores have not

65 }

66

67 System { // This is the overall K-Means system process that uses the 16 cores as components within it

68 if (reset) {

69 All registers and counters = 0;

70 goto Initial;

71 }

72

73 Initial:

74 if (Start)

75 goto ReadImageSize;

76 else

77 goto Initial;

78

79 ReadImageSize:

80 ImageSize = SerialIn;

81 goto ReadK;

82

83 ReadK:

84 K = SerialIn;

85 goto StoreImage;

86

87 StoreImage: // store the image serially from DataIn input

88 Mem[Address] = DataIn;

89 Source = 0;

90

91 if (Address == ImageSize) {

92 Address = 0;

93 goto PutPixelOnBus;

4

94 }

95 else {

96 Address = Address + 1;

97 goto StoreImage;

98 }

99

100 PutPixelOnBus: // finished storing to memory, now we read from it

101 DataOut = Mem[Address];

102 Core(DataOut); // cores receive pixels and perform their processing

103

104 if (ReadNextPixel for all cores && Address != ImageSize) {// all cores are ready to receive a new pixel

105 Address = Address + 1;

106 goto PutPixelOnBus;

107 }

108 else if (ReadNextPixel for all cores && Address == ImageSize) {

109 Address = 0;

110 goto PutPixelOnBus;

111 }

112 else if (MoveToWrite) {

113 Address = 0;

114 goto Write;

115 }

116 else

117 goto PutPixelOnBus;

118

119 Write: // writing clusters back into the memory in place of the pixels

120 Mem[Address] = DataIn;

121 Source = 1;

122

123 if(Address == ImageSize)

124 goto Stop;

125 else {

126 Address = Address + 1;

127 goto Write;

128 }

129

130 Stop:

131 Wait for a new image to be received;

5

132 if (NewImage) // signal received that there is a new image

133 goto Initial;

134 else

135 goto Stop; // remain here so that the K-Means segmented image remains in the memory;

136 }

3 Datapath Diagrams

The following pages show the main datapath diagrams for our circuit. First we present the Engine
module which is comprised of 16 threads. After that we show the Cluster Machine datapath which
is our top level module and is the overall system. For this specific datapath we show a general
design that can use N number of Bengines to run 2N engines. The limitation here is how much the
FPGA can actually fit in terms of area. For our implementation we use a value of N = 5 for 10
engines as this was the maximum allowable number of engines that fit for our given FPGA.

6

ClosestCore
Signal
(15 bit

register)

D0-D15

Comparator

Pixel0
(register)

Means

Thread_0

Red Acc

Green
Acc

Blue Acc

counter

+

0

D0

D0 as inc

ACC0
Counter0

Thread_1

Red Acc

Green
Acc

Blue Acc

counter

+

0

D1

D1 as inc

ACC1
Counter1

Thread_15

Red Acc

Green
Acc

Blue Acc

counter

+

0

D15

D15 as inc

ACC15
Counter15

Cluster Engine

...

16 Threads working in parallel in an engine

Pixel1
(register)PixelIn

Two-stage pipeline

Valid
RegisterValidIn

D0-D15 are ANDed with Valid
to distinguish between

 the cases in which a PixelIn's
value is 0 or if there is no input

Valid

Cluster Machine (Overall System)

Memory

Cluster Engine 0 Cluster Engine 1

Accumolators and
counters

Dividers

Mean File

(Stores the previous
and new means
between each

iteration)

AllStable

We can have as many
engines as we can fit on

a given FPGA board

parameterized summation circuit to support
the number of engines we use

16 pixel division

each two engines will have one
 ram block with two-read-ports

In our case we use 10 engines

BEngine 0

Memory

Cluster Engine 2 Cluster Engine 3

BEngine 1

Memory

Cluster Engine 2N Cluster Engine 2N+1

BEngine N

. . .

Each one of these engines produces the accumulated sum
for its respective group of pixels

The accumulated sums are then
accumulated together once more within the

sum unit module

Main Memory
(Stores whole image)

Sout

Sin Count (Addr)

Enabled Register
(16 bit)

Enabled

Stores a bitmask that corresponds
 to the enabled threads based on the K input

Pixel-to-cluster

Sout Means

Enabled

Mean_out

This module takes an image pixel and the final computed means
 as inputs and produces the final mean output that corresponds

to the pixel based on the manhattan distance

Means

Initial

Start

Kcount <= in
Size <= in

Configuration

Mem[count] <= Sin

count == image_size
0

Engines accumulate
RGB values here

1

allEnginesDone
0

MeanAccs<= Sum(engine Accs)

Sum

Means <= MeanAccs / counts

allStable

Output mean based on
manhattan distance to pixel

count <= count + 1

load_image

0

1

cluster

Image segments are loaded
into the memory blocks here

1

Sum all of the
engine accumulations

divide

done

count <= 0

This is where pixel_to_cluster
operates

1

count == image_size

0

1

0

Cluster Machine ASM

clear all accumulators

4 Verilog Modules

4.1 Cluster Machine

As mentioned earlier, the cluster machine is the top-level module and is our parallel implementation
of K-Means Clustering for image segmentation in hardware. It contains 5 BEngines that perform
the accumulation of the parts of the image. The accumulations from the BEngines are accumulated
once more within the sum unit into RGB components for each of the respective clusters. The
sum unit accumulations are then divided using a set of dividers and their mean outputs for each
iteration is stored in the mean file. The mean file compares the new means with the means from
the previous iteration and checks if they are stable, and if all of them are stable then the means
computation is complete. Now we output the new segmented image through mean out using the
pixel to cluster module. This module compares the image pixels from the main image memory
block and outputs the new pixel based on the Manhattan distances of the computed means to the
original image pixel. The Cluster Machine also has a control unit as a state machine to synchronize
the transitions between the different parallel stages.

4.2 BEngine

A BEngine contains a single dual-port memory block and two engines. Each engine processes half
of what is contained of the image in the memory block, so one engine would be operating on the
pixels at even addresses and the other would be operating on the pixels at odd addresses.

4.3 Cluster Engine

Cluster engines contain the accumulators and counters for each of the cluster threads for a set
of pixels belonging to that engine, as well as the distance comparator and Manhattan modules.
These engines cluster all of the RGB values and increment the thread pixel counters based on the
Manhattan distances which are compared using the distance comparator module. The engine is
two-stage pipelined to reduce the overhead of the Distance Comparator and Manhattan modules.

4.4 Distance Comparator

The distance comparator module takes in the thread distances computed using the Manhattan
module and then compares them all through a sequential stage based comparison scheme to find
the thread that corresponds to that smallest Manhattan distance. In the first stage we compare 8
distances with 8 other distances and produce the minimum out these 8. These 8 minimums are split
into two sets of 4 minimums that are compared with each other in the second stage. In the same
way, the resulting 4 minimums are then split into two sets of 2 minimums. The final stage compares
these last two minimums and produces a signal based on the final minimum that corresponds to on
of the inputs to a priority encoder. The priority encoder outputs the index of the nearest cluster
so that a pixel may be accumulated to it within a thread.

4.5 Sum Unit

The sum unit received the accumulated values and counters for all of the cluster threads for all of
the engines and accumulates them into a single value for each of the respective means. It does this

10

by sequentially adding the threads using a single accumulator for the RGB values and pixel counts
for each of the threads. The output of this module is the final accumulated values for each of the
means that are ready for division in the next stage.

4.6 Mean Divider

The mean divider module is simply an encapsulation of 3 dividers corresponding to the RGB values
of the pixels. The actual dividers are standard generated Xilinx ipcore dividers. Throughout testing
we found that the Xilinx ipcore dividers take 26 cycles to finish 1 division operation. The mean
divider module also includes the signal rgb ready that indicates that all three of the divisions have
finished. In the Cluster Machine we use 16 of these mean dividers to divide the cluster accumulators
by the number of pixels assigned to the clusters.

4.7 Mean File

The mean file is the module that stores the values of the means. Initially, we store constant
values for each mean that are equally spaced between the range of 255 (the max value that a pixel
component can have). We store the mean values between each iteration so that we can compare the
previous iteration’s mean value with that of the new iteration to check for their stability. This is
done through the stability checker module, which is a modified comparator that checks to see if the
difference of the previous iteration means and the new iteration means is less than 6. The stability
checker produces a stable signal for the respective mean if the threshold difference condition is
satisfied. If all of the means are stable, then an output signal allStable is produced indicating that
the iterations can stop.

4.8 Pixel-to-Cluster

This module is used to output the final segmented pixel values after the means have been computed.
This happens in a similar fashion to how the pixels are assigned to each cluster except that in this
case we read from the main (whole) image memory block rather than separate engine memory
blocks. We also re-use to Manhattan and Distance Comparator modules to be able to assign a
mean value to an input pixel. In the test bench, the output mean values are also written to a file
so that we may be able to compare our image outputs with the golden model.

5 Results

Figure 1: A resized version of the original Wikipedia article image, used for testing.

The final results that we obtained through both simulation and synthesis were highly satisfactory.
The algorithm efficiently works as required for different values of K. We tested the algorithm on

11

Figure 2: K = 4, Cycles spent processing means = 1701.

Figure 3: K = 8, Cycles spent processing means = 1276.

Figure 4: K = 12, Cycles spent processing means = 2127.

Figure 5: K = 16, Cycles spent processing means = 2551.

a resized version of the image given on the Image Segmentation article on Wikipedia (shown in
figure 1) for values of K = 4, 8, 12, and 16 (shown in figures 2, 3, 4, 5). The number of cycles
taken for computing 4, 8, 12, and 16 means were 1701, 1276, 2127, and 2551 respectively. It should
be noted that the image size was 3800 pixels, so to calculate the total number of cycles you would
also have to add 2*3800 to the cycles spent processing because the circuit first spends 3800 cycles
to read the image, and then another 3800 cycles to output the segmented image. The circuit also
synthesizes and maps on our given board (xc7a100t-3fgg484) and is within the area constraints of
the board. The minimum period in which our circuit operates at is 11.471 ns (Max Frequency =
87.180 MHz). The timing report for the circuit is shown below in figure 6. We have also shown that
our design meets the area constraints through the device utilization report given in figure 7. For the
given clock period, if we compute the total time spent processing it would be clock period * total
clock cycles, where the total clock cycles is the sum of the reading, processing, and writing cycles.
For our tests above, we can find that for 4, 8, 12, and 16 means the total time for the circuit would
be 106.68 µs, 101.82 µs, 111.58 µs, and 116.44 µs respectively. If we only consider the cycles spent
processing (neglecting the cycles spent reading and writing), we will find that the total processing
times for 4, 8, 12, and 16 means are 19.51 µs, 14.64 µs, 24.40 µs, and 29.26 µs respectively. It must
be stated however, that the FPGA choice given to us was disappointing as we believe that we can

12

run at much less clock cycles if we were able to fit more engines on the board, but unfortunately
we were limited to using 10. For an in-depth analysis of our module’s implementation on an actual
board, see the Xilinx reports submitted with this project.

Figure 6: Timing Report

Figure 7: Device Utilization Report

13

