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1 Introduction

Recent developments in the field of ubiquitous computing and internet of things devices have
introduced more methods in which data can be collected and stored. The result is that there are
larger magnitudes of different types of collected data, and the storage capacities within data centers
are growing tremendously. This has created new avenues for data exploration and increased the
possibilities for finding useful statistical relationships using techniques from big data analytics, and
machine learning. For machine learning applications in which the input data is stored in large data
centers, the computational load required for training accurate high-end models is often spectacularly
large. Such loads pose a problem for power consumption and similarly CO2 emissions. A recent
study on energy considerations in deep learning has shown that training a common NLP model
using GPUs can emit 626,155 lbs of CO2, which is the equivalent average emission of five cars
throughout their entire lifetimes [12]. One reason for of these tremendous power loads and CO2

emissions is that the computers used to train such models are general purpose machines that are
designed to handle a variety of different tasks.

In our project, we propose a special-purpose computing core that performs a specific unsuper-
vised machine learning task, namely clustering. One of the most popular methods for this task is to
use the K-Means Clustering [8] algorithm. K-Means Clustering is an algorithm that takes an input
dataset of multidimensional points and groups these points and classifies them together into k clus-
ters. Clustering is widely used in many applications that involve finding statistical relationships or
correlations between data points and grouping them into suitable categories which are represented
by the clusters.

With the abundance of large corporate data centers there becomes a need to efficiently perform
clustering on large amounts of data so that useful relational information can be extracted, while
maintaining reasonable power consumption and without sacrificing speed. In this work, we propose
an efficient clustering approach that utilizes an FPGA to work as a custom computing machine that
can be attached to networks. We do this by making computational improvements on the original
k-means algorithm to work better on hardware, and we introduce this design as a configurable IP
core.

1.1 K-Means Clustering - The Algorithm

The K-Means Clustering algorithm involves grouping a given dataset of multi-dimensional points
into a user-selected k number of clusters by computing the means or centroids for these clusters
iteratively until they stabilize. A point is grouped into a cluster by finding and assigning the nearest
centroid to it. Algorithm 1 below shows the steps involved, assuming three-dimensional data points
within the range of 0 to 255. First k centroid values are initialized. Next the centroids accumulate
the data points by determining the nearest centroid to each point using a distance metric calculation
(euclidean, manhattan, etc.). After all the points have been accumulated, the centroid values (or
means) are calculated by dividing the point accumulators by the number of points, and this is done
for all of the clusters. This is done iteratively until all of the cluster’s centroids converge, which
for a single cluster occurs when the difference between the new centroid value and the previous
iteration’s centroid value is within a user-defined threshold. The clusters are then returned so that
the points can be classified to each of the clusters accordingly.
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Algorithm 1: K-Means Clustering

// assuming input data is stored in data variable

k = userInput()
threshold = userInput()
// threshold is the stability margin for centroid convergence

clusters = []
// clusters will contain centroid values, accumulators in x,y, and z, the

number of points assigned to them, and the centroid values from the

previous iteration

for i = 0→ k do
clusters[i].centroid.append([randomInteger(0, 255),
randomInteger(0, 255),
randomInteger(0, 255)])
clusters[i].previousCentroid.append([randomInteger(0, 255),
randomInteger(0, 255),
randomInteger(0, 255)])
// initial centroid values are generated randomly here but in practise

the initialization method can make convergence faster as well as

ensure a good quality of the final converged solution

end
allStable = 0
while not allStable do

foreach point ∈ data do
nearestCluster = findNearest(point, clusters)
// can use any distance metric to find nearestCluster, such as

manhattan, euclidean, etc.

nearestCluster.accX += point[0] // point’s x value

nearestCluster.accY += point[1] // point’s y value

nearestCluster.accZ += point[2] // point’s z value

nearestCluster.points += 1

end

foreach cluster ∈ clusters do
cluster.centroid = [cluster.accX / cluster.points, cluster.accY / cluster.points,
cluster.accZ / cluster.points]

if |cluster.centroid− cluster.previousCentroid| ≤ threshold then
cluster.stable = 1
cluster.previousCentroid = cluster.centroid

end

end
allStable = 1
foreach cluster ∈ clusters do

if not cluster.stable then
allStable = 0
break

end

end

end
return clusters
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1.2 Clustering in Hardware - Problem Scope

This project deals with the hardware implementation of K-Means Clustering. The main problem
is that current algorithms that exist are sufficient but cannot easily be implemented into efficient
high speed hardware circuits. This is in regards to speed, power, and resource utilization. Some
applications are rather fast in their processing but utilize a large percentage of a device’s hardware
resources. Other implementations could have a small percentage of hardware utilization but may
not be optimal in terms of their processing speed. Power is also a major issue here, as many
implementations do not take into account the amount of lost power due to unnecessary bit-switching.

1.3 Similar Works in the Literature

The scope of clustering approaches has solid foundations within the literature, as others have
proposed their own methods and design iterations. Some of these approaches have introduced
complete hardware implementations, while other ones only suggest algorithmic improvements to
the k-means clustering algorithm that are based on theoretical work. Work done by the latter
group has most commonly been verified through software.

One hardware-based approach is the design proposed by Hussain et al. which follows a stage-
based computation architecture [5]. These consist of the distance finder, minimum distance finder,
accumulation, and divider stages. An input point arrives through a stream and the Manhattan
distances [3] between it and each of the clusters is calculated. The minimum of these distances is
then found through a hierarchical comparison scheme. The cluster associated with the minimum
distance is then chosen to accumulate the point for the next iteration. After the arrival of the
final input point the new cluster values are computed from the associated cluster accumulators and
counters. The advantage of this design is that it can easily be pipelined, as well reconfigured to
follow a parallel architecture. It has two major drawbacks however, in that it requires the calculation
of k distances for each point, and that it also uses an integer division core which is highly inefficient.
An algorithmic improvement that can be made to this design is to avoid computing distances as
well as to perform as few comparisons between points and clusters as possible.

One way of making such an improvement is introduced by Saegusa and Maruyama in their
kd-tree hardware implementation [11] based on the methods presented by Kanungo et al. [7]. The
idea is to build a binary search tree with k dimensions, alternating these dimensions with level
growth down the tree. The purpose is to perform a minimal traversal of this tree, visiting only the
candidate set of clusters which can be considered to be neighbours to the input point. Through
this technique, the number of distance metric computations is reduced since comparisons are done
between a point and the candidate set cluster values instead of all possible existing clusters. We use
these proposed methods as the basis for our approach and further improve on them by introducing
pipelining and parallel computations. We also use a modified comparison scheme based on building
a kd-tree, and finally we also eliminate division operations by avoiding the calculation of a mean
value from cluster accumulators and counters.

1.4 Possible Approaches to Platform Selection

For the general problem of clustering, the most prominent approaches are to use a software
application that runs on a CPU, or one that runs on a GPU, or a complete hardware-based approach
using an FPGA. Software based approaches are usually sufficient for single-use scenarios, or for
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relatively small data sizes but suffer greatly when the size and quantity of the data increases. GPU-
based applications perform much better due to their parallel threaded nature but are sub-optimal
when it comes to power, since all of the GPU’s components are always running simultaneously, even
the resources that are not needed at a certain instance during processing. FPGAs on the other
hand are very fast while also retaining power-efficiency. This is because they are designed to only
utilize as much hardware as is required by a specific synthesized circuit, in addition to allowing for
different runtime options.

FPGAs are also advantageous both for development and prototyping because they grant us
flexibility in algorithmic development with the possibility of testing and comparing multiple designs
in their throughput, power efficiency, and resource utilization. One major drawback to using FPGAs
is that they are inflexible in resource allocation because once a circuit is synthesized, it has a fixed
amount of resources allocated to it that cannot change. In our case, this is not an issue since
we require our application to process large amounts of input data so we need to account for the
worst case scenario by reserving a large percentage of the FPGA’s resources. Table 1 outlines a
summarised comparison between the possible platform approaches.

With that being said, we find that a tailored hardware implementation is the most effective choice
for the design we are implementing. In order for the clustering circuit to be used conveniently and
for a wide range of applications, there is also a significant benefit in designing it to be network
attached. This would allow the input data to arrive to the circuit in a stream through the network,
so that the clustered output data can be processed and transmitted with a speed that matches
that of the network, therefore avoiding bottlenecks. To allow the user to conveniently access our
hardware application, an API and web interface can also be developed. This provides an access
method that lets users use it as a server over a network. In this initial phase, we are using image
data as the input so that we can visualise the clustering result to conveniently identify any faults
that may have occurred.
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Approach Description Pros Cons

Software

(CPU)

Running a clustering
software program to
run on the CPU,
written using
a high-level
programming
language.

• Writing the software
program will be a lot
simpler.
• Can use recursion and
object-oriented
programming.
• Program development
is flexible - can make
changes very easily.
• Portability is viable.
• No need to purchase
special equipment.

• Very slow and inefficient
compared to GPU and
FPGA implementations.
• Cannot optimize
processing for a specific
algorithm.
• Very limited parallel
processing capabilities.

Software

(GPU)

Running a parallel
multi-threaded
clustering software
program to run on
the GPU, written
using a high-level
programming
language.

• High speed and
throughput due to fully
parallel architecture.
• Ease of writing
programs that can use
multiple threads
if independent operations
are involved.
• Flexible program
development.
• Can use object-oriented
programming.

• High power consumption
in comparison to FPGAs.
• Expensive in comparison
to CPUs.
• No advantage to using it
when mostly dependant
computations are involved.
• Supports only one type
of parallelism design
paradigm, which is single
instruction multiple data
(SIMD).

Hardware

(FPGA)

Running an
optimized parallel
pipelined hardware
program to run on
an FPGA, written
using a hardware
description
language (HDL).

• Fine-grained parallelism
due to FPGA synthesizing
as much hardware
resources as required.
• Can design very specific
and optimized hardware
circuits.
• High speed and
throughput with lower
power than a GPU.
• Can allow for
independant specialised
computing machine
designs.

• Cannot allocate more
resources during runtime
(after circuit has already
been synthesized).
• Very expensive when
compared to CPUs and
GPUs.
• Cannot be used for
general-purpose
processing.

Table 1: A comparison of the most common platform selections for applications. All of the men-
tioned points are applicable to clustering.
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1.5 Potential Impacts

The main impact of this system is that it provides an efficient, convenient, and low-power
solution for clustering. This is highly beneficial for data centers which have significantly large data
stores and require high-speed real-time processing. Another impact is that this system can enhance
research in artificial intelligence and machine learning applications, as it can process larger amounts
of data with greater throughputs.

The system additionally has a broader societal impact mainly on the economy and the environ-
ment, as well as a possible social impact. The economical impact is significant as companies will
benefit due to the increased capabilities of finding business insights from consumer or sales data.
This will allow businesses to better tailor their products to consumers’ needs, as well as uncover
the business strategies that are most effective in generating revenues. Some common business use
cases for clustering include recommendation systems, grouping customer demographics, grouping
data from market research surveys, grouping products of similar types, etc.

Moreover, the low-power aspect of our system is beneficial for the environment because of
the amount of saved electricity from reduced special-purpose processing within data centers. Re-
duced power consequently results in reduced CO2 emissions, therefore our system can contribute
to dampening the effects of climate change by decreasing greenhouse gas emissions. Furthermore,
less generated power results in less generated heat which in turn reduces cooling costs within data
centers.

There is however, a potential negative health impact that is the result of social media companies
getting better at identifying how to maintain user engagement on their platforms. They can use
that knowledge, which was obtained from clustering their user data that is saved in corporate data
centers, to increase screen time on their respective platforms to catalyse social media addiction.
Social media addiction has been shown to cause mental health problems due to negatively affecting
self-esteem [4]. This impact however, is most likely minor in scale compared to the others.

Finally, our system has no direct observable negative impacts in the areas of public safety
and welfare, as well as privacy/information security. These impact factors in different areas are
summarised in Table 2 below.
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Economic Impact

Improved capabilities for finding statistical relationships and insights
for businesses, which leads to more profits. Enhanced business
intelligence will also allow companies to better tailor their products
due to better understanding of their consumers. All of this leads to
positive economic growth.

Health Impact

Social media companies using our system will get more insights into
improving user engagement on their platforms. More engaged users on
social media could become addicted. Social media addiction has been
shown to cause some mental health problems that stem from reduced
self-esteem [4].

Environmental
Impact

Our system is power-efficient, therefore reduces the amount of
consumed power for processing. For data centers that have large data
stores that need to be processed by our system, the accrued power
savings are quite significant. These power savings are highly
impactful with regards to preserving the environment, due to less
required power from generating stations. Consequently, less power
consumption translates to less greenhouse gas emissions, which in
turn slows down the effects of climate change. Additionally, less power
corresponds to less dissipated heat which in turn reduces cooling
requirements as well as costs.

Societal Impact
(welfare and safety)

No direct observable societal impact, or in welfare and safety.

Table 2: An outline of the different impacts our system would have in different areas.

2 Requirements and Constraints

For the system that we have designed, we have synthesized it on the Cyclone V board so that
consistent testing results can be obtained. Additionally, this board was seen to be the fastest
using the free version of the design software that was available to us. Therefore the requirements,
constraints, and specifications are outlined based on our board choice. In reality, the system can run
on any FPGA board but we have constricted ourselves to this one due to circumstantial limitations.
For future work we will be synthesizing on better, faster boards that are more representative of
the hardware that the system will run on in a practical scenario. Note that the specifications are
mentioned in the system design section.

2.1 Requirements

The requirements for this project are as follows:

• The system shall be capable of processing as many clusters as possible

• The system shall be capable of receiving and processing as many points as possible.

• The individual dimensional values of the points will be 8-bit unsigned integers.

• The system shall be in the form of a standalone custom computing machine for clustering
where the number of points and number of clusters are user-inputs evaluated at runtime.
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• The system shall be capable of becoming a network attached computing machine that is
interfaced through ethernet.

• The system shall be able to match the speed of high speed ethernet.

• The system shall achieve a point misclustering percentage error of less than 5%.

• The system shall not utilize resources outside of the FPGA.

2.2 Constraints

• The system is constrained to not having a constant throughput due to the dynamic nature of
the data and number of clusters.

• The system is constrained to using the Cyclone V board.

• The system is physically constrained to using a maximum storage capacity of 0.8575 MB
based on available BRAMs.

• The hardware circuit is constrained to using 342 DSP blocks.

3 Work Plan

3.1 Timeline

Week 1 The first week was dedicated to determining the senior project problem and defining it.
By the end of the week, a project proposal/action plan was written up and sent to Dr Elrabaa for
his approval.

Week 2 This week was dedicated to defining the problem and researching it. Relevant research
papers were read to better understand some of the solutions and approaches done by others in the
field. The first version of the golden model was written using Python. At first, this model performed
a standard K-Means Clustering procedure and did not include any optimizations. It only had the
feature to cluster images. It included options to use either the Manhattan or Euclidean distance.
The github repository was also made.

Week 3 The first optimized design iteration was attempted in the software version. This iteration
involved treating the cluster dimensions separately. The sub-box segment initialization method
(Figure 9), was also implemented. There was a major error within the code and the reason for it was
identified. This problem however was not easily fixable and it showed that we had misinterpreted
the implementation of this method. A meeting with Dr Elrabaa was held to discuss this. After
better understanding the problem, we were able to debug it and fix the software version. We
tested it extensively on images with different values of K and with different distance metrics. The
silhouette coefficient (Equation 1) was chosen as a design metric and was implemented within the
code. A histogram plot was added to the code as well to better visualise the classification accuracy
for each point.
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Week 4 A newer cleaner version of the code was written, also in Python, as the previous one was
getting messy and difficult to track/modify with growth. This new version also included the feature
to generate random data samples for clustering instead of images. It also included the feature to
plot the points on a 3D plane for visualisation. An approximation that was intended for convenient
avoidance of division was also implemented into the code. The results seemed promising. We also
edited the code so that it avoids division and we were successful in doing so.

Week 5 A computation mistake was identified within the code and was quickly fixed. It revealed
that the results that seemed promising beforehand were not up to our clustering quality require-
ments. We had to re-think our approach to the problem. We discussed what we could do and
started implementing the second design iteration which was the point streaming and expansion
strategy. This strategy however was proving to be very troublesome so we decided to abandon it.
Instead we went back to a paper that we had reviewed, that discussed implementing a kd-tree in
hardware [11].

Week 6 The paper’s kd-tree hardware implementation was not optimal and in some ways not
practically applicable to our case, so we needed to think more generally about kd-trees as data
structures. We attempted to implement a kd-tree in our software version a few times in different
ways but were always unsuccessful.

Week 7 We found an open-source implementation of a kd-tree online and we tested it out to
better understand how it works. After fully understanding it we integrated it into our code but
with division. This worked very well and we were very happy with the results. We then tested it
extensively with different cases. The mid-term report was also assigned during this week.

Week 8 We faced a problem when attempting to remove division from the previous successful
kd-tree implementation. This was due to the cluster value approximation that we were using before
not translating well to the kd-tree implementation. We attempted to debug the problem or find a
better way to implement the approximation but the results were unsatisfactory. We were not able
to solve the problem during this week.

Week 9 This week was dedicated to writing up the midterm report for submission. We worked
on the required illustrations which were the use-case, activity, and deployment diagrams. We
completed the mid-term report as required and submitted it by the end of the week.

Week 10 At the beginning of this week we analyzed our attempt at removing division from the
kd-tree in more detail. We realized that our previous approximation is no longer applicable, but
instead we can find an actual value for our solution to the cluster values. We implemented the
actual value approach and found it to be very successful. We also tested it with the silhouette
coefficient metric and found accurate results. This was a monumental achievement within the
project because it meant that we could now finally start working on the hardware implementation.
There was however, one issue that we had to think about. Our kd-tree implementation has a step
that involves sorting the clusters before each iteration. We realized that this might complicate
the design in hardware so we did some testing to determine whether this step was necessary. The
conclusion that we came to was that it was necessary because it reduced the number of iterations
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significantly. We also decided that in order to evaluate the performance of our upcoming hardware
solution we would need base designs without the improvements that we propose, to have a reference
to compare to. Therefore, we promptly began designing a basic sequential clustering hardware
implementation.

Week 11 We completed the sequential design during this week and began working on another
design with the improvement of only removing division. We completed the second design without
division and started thinking about how to approach the kd-tree implementation in hardware.
We did this by drawing the proposed architectural model. After completing our reference model
diagram, we promptly began work on implementing it.

Week 12 This week was fully dedicated to the kd-tree hardware implementation. We began by
designing the cluster ce and cluster pe modules. Our objective was to first ensure we had a way to
test the sorting stage in hardware so we designed these modules to first meet these requirements.
We finished their design and verification by the end of the week and began integrating them together
into the node module.

Week 13 We continued work on the node module so that it would also accommodate point
propagation. We completed a working version of the sorting and point propagation stages of it and
we spent the remainder of the week testing it. The testing stage took a considerable amount of
time because there were many scenarios that we had not thought of before so we had to account
for them. This resulted in continuous revisions and iterations of our working design. We also spent
a significant amount of time this week finishing up the final report so that we could have it ready
for submission on time.

3.2 Task Division

The project tasks were completed by either Ahmad, or by Hamza, or were joint efforts by both
members. While it is difficult to record every single contribution and to correctly attribute valid
credit for all the tasks in a collaborative project such as this one, an attempt has been made at
doing so. This is outlined as follows:

Ahmad’s tasks

• Assisted in writing the action plan for the project.

• Supervised in writing the first design optimization that involved clustering separately on each
dimension.

• Identified the reason for the major error in the first design optimization.

• Wrote the second cleaner version of the golden model.

• Wrote the code for the 3D plot for point and clustering output visualization.

• Wrote the code to generate random data samples and to control the standard deviation of
their distribution.
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• Edited the code in order to remove integer division

• Identified and fixed a computation mistake within the code related to using an incorrect
method to verify cluster output quality, which allowed us to abandon the separate dimensional
processing approach.

• Explored, implemented and tested the point streaming and cluster expansion approach.

• Identified the correct way to remove division from the kd-tree approach.

• Revised the mid-term report.

• Designed the sequential k-means clustering model with division.

• Designed the sequential k-means clustering model without division.

• Integrated the cluster ce and cluster pe modules together and used them to design the node
module.

• Came up with an internal communication scheme within the tree between different nodes.

• Wrote a python code to generate the text to declare and synthesize multiple node modules to
make a tree.

Hamza’s tasks

• Wrote the action plan for the project.

• Wrote and tested the first version of the golden model.

• Wrote the first design optimization that involved clustering separately on each dimension.

• Fixed the major error in the first design optimization.

• Implemented the silhouette coefficient metric within the code.

• Added a histogram for visualization of silhouette coefficients for all of the points. Also com-
puted the average silhouette coefficient.

• Added a method to identify misclassified points and to calculate their average.

• Implemented the approximation method for conveniently getting rid of integer division.

• Found and separately tested an open-source code for a kd-tree implementation. Decided to
integrate it into our the software model code base.

• Attempted to remove division from the kd-tree method using the prior approximation.

• Wrote the mid-term report.

• Evaluated the necessity for sorting within the kd-tree and determined that it was necessary.

• Wrote a pseudo-code algorithm for our approach to using a kd-tree for k-means clustering in
hardware.
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• Drew the architectural model schematics for the kd-tree hardware design.

• Implemented the cluster ce and cluster pe hardware modules that make up the node module.

• Modified the manhattan module to fit our design accordingly.

• Wrote testbenches for the cluster ce and cluster pe modules to verify their operation.

• Supervised and directed the integration of the cluster ce and cluster pe modules into the node
module.

• Wrote the final report.

Joint tasks

• Read research papers and reviewed the literature.

• Discussed fundamental design decisions of both the software and hardware models.

• Wrote, debugged, and tested large portions of both software versions, and the hardware
designs.

• Attempted multiple iterations of failed kd-tree implementations.

• Integrated the open-source code into the software code base and tested the model after its
integration.

• Designed the use-case, activity, and deployment diagrams.

• Removed division from the kd-tree approach in the correct fashion. This allowed for the
transition to the hardware version.

• Discussed and formulated the schematics for the kd-tree hardware design.

• Decided to move the internal components of the cluster ce out to become part of the node
module instead of its own self-contained module.
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4 System Design

4.1 System’s Behaviour: Use-Cases

Figure 1: Use Case diagram for the system.

The use case diagram for our system consists of four primary use cases and they are shown in
Figure 1. The first is to configure the cluster machine IP, and this is done by the system developer
using the APIs provided by the cluster machine IP. Next, the user can configure the runtime
parameters, which are the segments in each dimension. They can then run the clustering machine
to train a cluster model on the FPGA and to receive the segmented data. Finally, if a pre-trained
model already exists, the user can also perform binning or data classification by sending a point as
an input to the cluster machine to receive the cluster that corresponds to it.1

1These are the typical use cases for a complete networked computing machine, which is how we intend our system
to be used. In our case, we are only able to provide and demonstrate the last two use cases since we were not able
to get access to an FPGA with which we can install our IP core. Therefore there was no practical way for us to set
up the system as a cluster machine nor to configure its runtime parameters.
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Figure 2: Activity diagram for each of the use-cases.

For each of the respective use cases in Figure 1, the activity diagrams are shown in Figure 2.
Developers can set up the cluster machine by first installing its IP core, then by integrating it into
the system using the provided APIs, and finally by providing clustering access to the users through
utilization of the APIs.

Users can then configure the runtime parameters which in our case are the number of initial-
ization segments in each dimension. In theory and with further development, the circuit can be
generalised to support a variable number of dimensions but this will require additional work and
is beyond the requirements that have been set for this project. After the runtime parameters have
been configured users upload their data into the system.

When the cluster machine has been set up and the runtime parameters have been selected the
user can initiate the clustering process, which will send the start signal. Once clustering is complete
the user can view the final resulting clusters.

Once a cluster model exists on the FPGA, users can input new individual points to be classified
by the pre-trained model. So in this case, a user will enter the input point, point classification will
occur through binning, and the respective cluster that the point belongs to will be sent back as an
output.

4.2 Product Concept and System Architecture

A typical system using the FPGA clustering IP core is comprised of mainly a web server, and
the FPGAs running the cluster machine - this is shown in Figure 3. A user will first configure the
runtime parameters and will upload the data as shown in the second use case in Figure 1. Clustering
can then be initiated and performed as in the second use case. The input data, which is shown as an
image in Figure 3, is received through the web interface which has already been configured by the
programmer into the system in the first use case. The web interface has a pre-configured backend
which interfaces with the server’s web socket. This web socket is used to communicate with a router
which manages incoming and outgoing loads between the numerous connected FPGAs. The router
in turn communicates with the FPGAs through their ethernet interfaces. Inside an FPGA data
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received from the ethernet interface is saved onto memory, so that the K Means Cluster Processors
have access to it. This will cause a limitation based on memory size within the FPGA, but in this
case we propose clustering a portion of the dataset for training based on the maximum available
memory. The cluster processors then perform the algorithm to generate the clustered model and
centroid values accordingly. Once binning is required as shown in the fourth use case, the ethernet
interface will communicate with the cluster processor directly, since the cluster processor contains
the pre-trained clustered model. The cluster processor will send the classification output back
directly through the ethernet interface.

One point to note is that the maximum possible value for K within a tree in hardware is a
synthesis parameter, and can be specified based on availability of hardware resources on the FPGA
board. The actual value for K that a user requires will be a runtime parameter that is specified by
the user before the clustering task starts. This input value for K must be less than the maximum
value for K specified during synthesis.

Figure 3: Product concept to illustrate the system architecture.

4.3 System Specifications

• The system achieves a best case processing speed of 173 Mb/s within the constraints of the
Cyclone V board.

• The system is capable of processing a maximum of 114 clusters based on the available resources
on the Cyclone V board.

• The system is capable of storing and processing a maximum of 285833 data points based on
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the space available in the BRAMs. BRAM management is performed by the synthesis tool.

• The input points for the system will be three-dimensional.

4.4 Compliance with Standards

The system hardware implementation is written using the 1364-2005 - IEEE Standard for Verilog
Hardware Description Language. A typical implementation of the system IP uses 40 Gb/s ethernet
compliant with the IEEE 802.3ba-2010 standard. It also uses the UDP protocol defined as RFC
768 by John Postel.

5 Hardware Algorithm Development

The algorithmic development stage was the longest in this project and was based on trial-and-
error, experimentation, iterative design, as well as testing and verification. This is because we had
requirements that we placed on the algorithm in order for it to achieve its intended functionality
within the proposed system. Therefore, we needed to ensure that these algorithmic requirements
were met before we could begin work on the hardware design. These algorithm requirements are
outlined in the following subsection.

5.1 Guidelines and Design Decisions

Guidelines The general algorithmic guidelines are as follows:

• The generated cluster model for an input dataset must be of high-quality. In other words,
points within a cluster should be close to that cluster’s centroid and far from the other clusters’
centroids. Point classification must also be accurate.

• The cluster algorithm’s hardware implementation must not have a high power consumption.

• The cluster algorithm’s hardware implementation must be fast. In other words, the algorithm
must avoid lengthy, unnecessary, and inefficient operations.

Design Decisions Based on these requirements, we placed these following design decisions on
the hardware algorithm:

• The algorithm must avoid integer division operations.

• The algorithm must avoid square root operations.

• The algorithm must avoid excessive multiplication operations - it should use as few as possible.

• The algorithm must avoid unnecessary bit-switching and should disable parts of the circuit
that are not running at any given instance.

• When determining the nearest cluster to a point, the algorithm must avoid visiting clusters
that are deemed to be highly unlikely results - due to being too far away based on the distance
metric.
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Reasoning behind the design decisions Integer division and square root operations in hard-
ware are not optimized and are inefficient. An LPM DIVIDE megafunction block takes up a
significant portion of hardware resources, is high in latency, and for a pipelined version, takes more
cycles to produce the final solution than we deem to be acceptable for our speed requirements [1].
The square root core is similar, and we avoid using it by computing the Manhattan distance instead
of the Euclidean distance when searching for the nearest cluster.

Multiplication operations are optimized in hardware using multiplier DSP blocks so are suitable
for replacing division operations, by implementing substitute arithmetic expressions based on multi-
plying both sides of an equality to get rid of the denominator. Too many substitute multiplications
however can increase bit-width considerably, and can also unnecessarily increase the number of
cycles. Therefore excessive multiplications should be avoided.

Based on transistor-level circuitry, power is dissipated when a bit switches from low to high
or vice-versa. Therefore we aimed to reduce power consumption by disabling inactive parts of the
circuit at any given time, thereby reducing unnecessary bit-switching. Additionally, by choosing to
filter out as many far away clusters as possible during nearest cluster determination, we effectively
reduce the number of computations and consequently the number of cycles, as well as the number
of unnecessary bit switches.

5.2 Experimental Software Version - Golden Model

Figure 4: A side-by-side comparison of an input image and it’s segmented output obtained from
the first golden model that did not yet include any code optimizations for hardware. The value of
K for the segmented image is 16.

To test out different clustering approaches and to have a baseline model with which we could
refer to, a software version was developed in Python to act as our golden model. Algorithm iteration,
experimentation, and verification were done using this golden model. Our first version of golden
model implemented clustering in its most basic form and without any design improvements nor
iterations. It had the feature to use images as an input for clustering, or in this case segmentation.
A segmented image with its original input, from the first working version is shown in Figure 4.

As our code base began to grow we needed it to have a more general and organized structure
that would allow for convenience in edits and changes. Therefore, we wrote a second modular
object-oriented version of the golden model. We included some useful features for experimentation
in this version. The first of these is the feature to generate sets of random normally distributed
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clusters for testing. This was done using standard functions provided by the scikit-learn library
[9]. It was now possible to test two base scenarios, using either an input image or a randomly
generated dataset. The second feature was to plot the output clustered data on a 3D plane for
better visualization. The plotting library we used for this was plotly [6]. This 3D plane plotting
representation is shown in Figure 5. The picture on the left shows the empty plot, and the picture
on the right shows the plotted and clustered points when the input was an image. Additionally,
Figure 6 shows the plotted and clustered points using a randomly generated dataset.

Figure 5: 3D space plot to visualise clustering outputs. The cluster example shown on the right is
for an input image.
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Figure 6: 3D Cluster plot with randomly generated data.

5.3 Clustering Quality Evaluation - Silhouette Coefficient

To evaluate the accuracy of the clustering output result, a quality metric was required. For
clustering applications one of the most commonly used quality metrics is the silhouette coefficient
[10]. The silhouette coefficient describes how compact and self contained clusters are, or in other
words how close points within a cluster are to the cluster’s centroid and how far away they are from
other centroids. The equation for calculating the silhouette coefficient for a given point x is given
as follows:

s(x) =
b(x)− a(x)

max{a(x), b(x)}
(1)

Where a(x) is the euclidean distance between x and the cluster it is assigned to, and b(x) is the
euclidean distance between x and the next closest cluster to it. s(x) is in the range of (−1, 1) and
the more positive it is, the better the quality of the solution. A negative s value indicates a poor
quality solution.

Next we needed a method to visualize the computed silhouette coefficients for all of the points,
so we plotted a histogram with 60 bins and observed the frequency of different silhouette coefficient
values. An illustration of the histogram plot is shown in Figure 7. Using the silhouette coefficient
values computed from all of the points, we compute the average silhouette coefficient value. A
remark to note is that if the points in the dataset are naturally close to each other then the average
silhouette coefficient will not be very high, although this does not necessarily indicate a poor
solution due to the points’ natural close proximity. A high relative frequency of negative silhouette
coefficient values however, is an indicator of a poor solution.
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Figure 7: Histogram plot of silhouette coefficient values for all of the points in an early test instance.
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5.4 Cluster Initialization

Figure 8: Diagonal initialization. Clusters are initialized along a diagonal line across the bounding
box. Diagram credit - Dr Muhammad Elrabaa.

The initialization stage is critical for an optimal clustering strategy. An effective initialization
can reduce the number of iterations significantly and can produce a higher quality solution. A poor
initialization on the other hand, can increase the processing load excessively and can cause the
cluster centroids to converge at sub-optimal positions. In our first version of the algorithm we were
generating the initial clusters randomly and this is not a very good strategy.

An effective method at narrowing down the range with which clusters can converge in involves
finding the maximum and minimum values for each dimension. These can then be used as bound-
aries to form a minimum sized cuboid, or a bounding box, that contains all of the points in the
dataset. Using the bounding box as our operation space we initialized the clusters along equally
spaced points between a diagonal line along the bounding box. This initialization scheme is shown
in Figure 8. However, this method is not much of an improvement over the random initialization
because it assumes that points will most likely be positioned along or close to the diagonal.

A better initialization strategy is to split the bounding box into smaller boxes and to treat these
boxes as initial clusters. This is done by splitting each dimension into segments and finding the
midpoints of these segments. The midpoints of each dimension are then combined to form the initial
centers. This is illustrated in Figure 9. This strategy is generally better than diagonal initialization
because it accounts for more evenly distributed points within the bounding box.

However, there exists a notable problem with this initialization scheme and it is that some of
the initial clusters will not move from their place, and will be considered to be empty clusters. This
problem is outlined in Figure 10. The black dots represent initial clusters that have not moved.
The reason for this is the diagonal shape of the data distribution in 3D space. Since the initial
clusters are outside of the data diagonal, they will never get any points assigned to them and will
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always be considered to have converged. This is against the requirements because in many cases
the actual value for the number of clusters will be less than the user-defined value k. Therefore, to
fix this problem there needs to be a way to determine the point distribution and ensure that the
clusters are not initialized outside of it. For our senior project, solving this issue was beyond our
scope of work, however we plan to tackle it in the project’s future work as this is definitely an area
of innovation.

Figure 9: Sub-box initialization. Clusters are initialized by splitting the bounding box into smaller
sub-boxes and using the centers of these sub-boxes as initial centers. Diagram credit - Dr Muham-
mad Elrabaa.
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Figure 10: An example of when the box initialization method fails. The black dots represent the
initial clusters that did not move from their place. This is because they are outside of the data
range so no points will be assigned to them.

5.5 Avoiding Integer Division

One of our algorithm requirements as specified earlier was to remove integer division due to
how taxing it is on hardware circuits. In the k-means algorithm, integer division is needed for
computing the means from the accumulators and counters after each iteration. This was seen to be
necessary because of the step in which we compare cluster centroids with points to determine which
clusters the points should be assigned to. However by multiplying both sides of the comparison
inequality, we can avoid the division operation and instead turn it into a multiplication. So as a
demonstration, this is the original inequality:

Pd ≤
Sd

N
(2)

Where Pd is the value of the point in dimension d, Sd is the accumulated value of a cluster in
dimension d, and N is the number of points assigned to the cluster.

This inequality becomes:

Pd ∗N ≤ Sd (3)

In this scenario, we avoid integer division by turning it into multiplication which is much more
efficient in hardware. The tradeoff here is that the bit-width for the value at the left of the
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inequality increases, in addition to the convergence condition now being determined from the cluster
accumulators and counters. The system can then output the final converged accumulators and
counters for the clusters, from which the means can be computed externally.

5.6 Clustering Design Iterations

Throughout the algorithm development phase, we were constantly making changes and experi-
menting with them to see their viability in becoming our final hardware implementation. Therefore
we spent the most amount of time during the project’s development on this phase, because some
designs would fail and we would have to re-think our approach. From the beginning of the project
up until its completion we attempted two primary design approaches, with only the second one sat-
isfying our algorithm requirements. These algorithmic approaches were the dimension separation
(Section 5.6.1), and clustering using a KD-Tree (Section 5.6.2).

5.6.1 Dimension Separation - Three Binary Trees

This method involves treating each dimension separately and performing three independent
clustering procedures in parallel for each of them. Moreover, the initialization step is similar to the
sub-box strategy of finding midpoints for sub-boxes with the difference being that these midpoints
will be treated independently as initial centroids for their respective dimensions. In this case, we
call them segments. The number of segments in each dimension is defined by the user. Clustering
will then be done using these initial segments individually and in parallel for each dimension until
the convergence condition is met for the three dimensions. The final clusters will then be built from
all possible combinations of these converged segments. As a result, k will be equal to the product
of the number of segments in each dimension as specified by the user.

In each dimension, clustering is done using a balanced binary search tree [2]. Binary search
trees are useful because, assuming a balanced case, they reduce the worst case complexity for
nearest cluster search from O(n) to O(log(n)) which is excellent for performance. To build a single
dimensional tree, we first calculate the midpoints between each two segments for all of the segments
that we have. Next, we use these midpoints as comparison values for all nodes within the tree except
the leaves. The leaves will instead represent the actual segment values. This is demonstrated in the
displayed example tree in Figure 11. Ci is the cluster centroid value for cluster i in one dimension
d. We assume that the array containing Ci values is sorted in ascending order. Given that the
comparison values for each internal nodes are the midpoints between two clusters, then by directly
comparing the respective dimensional value of the point Pd, we can determine whether Pd should
go left or right down the tree. The leaf that Pd ends up in is the nearest segment to Pd. Pd is
finally accumulated to that segment.
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Figure 11: A representation of a midpoint-based binary tree used in the dimension seperation
approach. If Pd is smaller than an internal node value, Pd will traverse to the left of that node. If
it is greater, it will traverse right. The leaf that Pd ends up at is the segment it is assigned to, so
it accumulates Pd.

Once all points have been assigned to clusters, the iteration ends and the convergence condition
can be checked. Once all of the segments have converged, clusters are made from them using the
combinations of all possible segments in each dimension. For example, for two segments C1, and
C2 in each dimension the final combination of clusters would be:

[(C1x, C1y, C1z), (C1x, C1y, C2z),

(C1x, C2y, C1z), (C1x, C2y, C2z),

(C2x, C1y, C1z), (C2x, C1y, C2z),

(C2x, C2y, C1z), (C2x, C2y, C2z)]

This is considered to be an approximation to the optimal solution, but when we tested it we had
moderately acceptable silhouette coefficient values (no points were misclassified). Figure 12 shows
the silhouette coefficient histogram using this method for randomly generated data.
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Figure 12: Histogram plot generated from random data and based on the dimension separation
method. This instance was for 3 segments on the x, y, and z axes respectively. The average
silhouette coefficient for all of the points is 0.355 . No points were misclassified.

One major disadvantage to using this method is that the final combined clusters can only have
centroid values from their specified clustered segments in each of the dimensions. This limits the
possibilities for the centroids and constrains them to only being a possible combination from the
final segments. This issue can be seen visually in Figure 13. In the image, three segments are used
for x, y, and z dimensions so K should be 27, but a limited colour range is seen in the image because
many clusters will have the same values for a given dimension. This is prominent in the area at the
center of the tree where the sun is situated. The orange hue of the sun was replaced with the red
colour of the sky due to the limited output colour set.
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Figure 13: Side-by-side comparison of between an image and its clustered output using the dimen-
sion separation technique. This highlights the drawback with the the method, in that a limited
value-set is generated for each respective dimension. Cluster centroids are formed from combina-
tions of this value-set.

Additionally, a critical problem exists in using this approach with regards to removing division.
This is demonstrated mathematically as follows:

Pd ≤
Si

Ni
+

Sj

Nj

2
(4)

where Si, Sj represent two adjacent centroid accumulators in dimension d, and Ni, Nj represent
their respective counters. To remove division, the expression would be written in this form:

2 ∗ Pd ∗Ni ∗Nj ≤ Si ∗Nj + Sj ∗Ni (5)

This new expression involves four more multiplication operations than the expression in Equa-
tion 3. This conflicts with one of the design decisions that we placed for the algorithm, mentioned
earlier. Not only is the expression inefficient in terms of computations, but it also significantly
inflates the bit-width of the comparators, especially for the left side of the expression.

When we discovered this we attempted a different method for building the tree, and it was to
use the averages of two clusters for the internal node comparison values instead of the midpoints.
In this method, internal node comparisons are done using this inequality:

Pd ≤
Si + Sj

Ni + Nj
(6)

When we remove division, this becomes the form of the inequality:

(Ni + Nj) ∗ Pd ≤ Si + Sj (7)

The advantage here is that this inequality has only one multiplication operation as well as only
requiring two additional adders - this is not taxing on the hardware and is performance-friendly.

Once we had reached this stage in the method we implemented it and tested the quality of the
clustering result. Unfortunately, it was not satisfactory and this can be seen in the histogram in
Figure 14. The histogram shows the clustering output for the same image used to generate the
histogram in Figure 12, also with 3 segments in each dimension. The most noticeable feature is
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that there is a large percentage of silhouette coefficient values that are negative, which indicates a
high misclassification rate. The exact misclassification percentage is 14.6%, which is unacceptable
based on our requirements. The average silhouette coefficient is 0.222, it is shifted heavily to the
left due to its negative values.

Figure 14: Silhouette coefficient histogram using the same image and same number of segments as in
Figure 12, but with inequality 7 for internal tree comparisons. Many points are misclassified given
the large quantity of negative values. The misclassification percentage is 14.6% and the average
silhouette coefficient value is 0.222 .

The reason for these unsatisfactory results can be deduced after looking closer into the approach.
It is based on doing three independent clustering runs on three different dimensions and then
combining the results from each to form the final clusters. This method, for all intents and purposes,
is an approximation so it is natural that we would not get the most optimal quality solution and
our work was to determine whether it was a sufficient approximation. If we do not consider our
division avoidance requirement it can be considered sufficient, but once we introduced another
approximation through the utilization of inequality 7, the quality results deviated outside of our
requirements. We had to abandon this approach and try something different.

5.6.2 KD-Tree Approach

The KD-tree approach was the final method that we attempted and was the one that worked
out the best for us. Therefore we used it as the basis for our hardware algorithm. Many others have
done similar work, with one of the earliest introductions of this done by Saegusa and Maruyama
[11], with their hardware implementation of the filtering algorithm outlined by Kanungo et al. [7].
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Winterstein et al. go further by improving upon the works of Saegusa and Maruyama by adding
dynamic memory allocation as well as pipelining and parallelism [13]. Our work uses the basic idea
behind Kanungo et al.’s filtering algorithm [7], but implements it in a slightly different way. We
also go on to remove division from the kd-tree and introduce an inter-communication protocol for
nodes within the tree.

The motivation behind using a kd-tree is primarily to reduce the required number of distance
metric calculations and comparisons required between a point and the potential clusters. Abstractly,
this is equivalent to filtering out clusters that are considered to be far away from the point so are not
even considered among the potential nearest neighbour clusters. In practise, this is done using the
kd-tree data structure which is shown in Figure 15. Each level corresponds to one of the possible
data dimensions x, y, or z. A point enters the tree through the root and propagates downwards
using a traversal technique that is based on depth-first search, but with a few differences. When
a point arrives to a node, the distance metric (manhattan or euclidean) is calculated between the
point and the node centroid. Additionally, the non-absolute axis component of the distance metric
is recorded as a value d. The decision to first traverse left or right is then determined based on
whether d is negative or positive respectively. Throughout traversal, the minimum distance value is
kept track of as a variable bestDist. The cluster corresponding to the bestDist is also kept track of.
When a point returns to the node from the first downwards traversal, the decision to make a second
traversal is determined based on whether the value of d is less than the current value of bestDist.
By the end of the traversal, the nearest cluster to the point will be identified and accumulated.

There is a significant performance advantage to using the kd-tree for clustering. The best case is
when only one traversal is made for each visited node and this results in a complexity of O(log(n)).
The worst case is when all nodes are visited, causing the method to devolve into a linear search
and resulting in a complexity of O(n).

This is very advantageous for data centers which might require require clustering for hundreds
or possibly even thousands of clusters, so traversing all of these clusters will be too demanding on
the computational resources. Additionally, in our method we introduce an experimental hyperpa-
rameter ε. ε is a user-defined constant that is added to d in order to increase the amount of cluster
filtering. The greater the value of ε, the greater the number of filtered clusters, but also the larger
the sacrifice in the search result accuracy.
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Figure 15: Kd-tree structure build from the sorted centroid array containing centroids 1 to 7. Each
dimension down the tree corresponds to a different axis comparison between a centroid value in
the current axis and the point value in the current axis. Points traverse the tree using depth-first
search. The nearest cluster to the point is kept track of during traversal and is outputted once
there are no more node traversals required.

Our hardware algorithm is split into three main stages: initialization, clustering, and binning.
These are shown in algorithms 2, 3, 4 respectively. The main algorithmic stages use helper functions
which are buildKdTree, traverse, clear, and updateStability. The helper functions are shown in
algorithms 5, 6, 7, and 8 respectively.

The kd-tree method requires a distance metric and in our case we use the manhattan distance.
To avoid division, since the manhattan distance is calculated from the centers we need an alternative
equation that uses the accumulators and counters instead. This alternative equation is:

DM = |Px ∗N − Sx|+ |Py ∗N − Sy|+ |Pz ∗N − Sz| (8)

Where DM is the manhattan distance, Px, Py, and Pz are the values of the point in each
dimension, N is the cluster counter value, and Sx, Sy, and Sz are the respective accumulator values
in each dimension. Internal node comparisons are performed using inequality 3.

Alternatively, the euclidean distance can be used and in this scenario the equation without
division is as follows:

D2
E∗N2 = (P 2

x ∗N2−2∗N ∗Px∗Sx+S2
x)+(P 2

y ∗N2−2∗N ∗Py∗Sy+S2
y)+(P 2

z ∗N2−2∗N ∗Pz∗Sz+S2
z )

(9)
Where DE is the euclidean distance. This is obtained by distributing this original equation

which is as follows:
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D2
E = (Px −

Sx

N
)2 + (Py −

Sy

N
)2 + (Pz −

Sz

N
)2 (10)

Initialization The initialization technique that we used is the sub-box method outlined earlier in
Figure 9. Algorithm 2 also shows the initialization of the global variables we will need throughout
the algorithm. meansAccNew and pointCounterNew are used to compare with their respective old
values to check for convergence. stabilityList is a list that checks for the stability of each cluster.
Once all values of the stabilityList are 1, the algorithm ends as global convergence is reached. The
threshold value is defined by the user (based on their required level of accuracy), and it is used for for
convergence determination of the clusters. In the case of clustering with division, it is the minimum
acceptable absolute difference between the current and previous iterations’ centroid values. In the
case of division removal, we use the threshold value to compare the current and previous iterations’
accumulators and counters instead, since we do not compute the actual centroids. Lower threshold
values result in more accurate globally converged cluster centroids, and typical values for it are
around 2-4. We assume that the dataset is read prior to processing, and that it is stored in the
data variable. This variable will be in memory in practise. Additionally, when we read the dataset
we record the minimum and maximum values in each dimension (segMin and segMax), so that we
may be able to compute the initial centroids. nSeg for each dimension is the user-defined number
of segments in that dimension. The first step of the initialization is to find the cutpoints (value
boundaries) in each dimension and to find the midpoints between them. These midpoints will
form our initial segments. We get the initial centroids by forming the combinations of the initial
segments. We also assign initial pointCounter values of 1 to all of the clusters to avoid division by
0.
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Algorithm 2: Initialization

Global variables
meansAcc, meansAccNew, pointCounter, pointCounterNew,
stabilityList, kdTree
threshold = 2
data // represents the data points saved in memory

Initialization(x, y, z):
foreach dim ∈ dimensions do

cutpoints[nSeg + 1]
initialValues[nSeg] // declarations

step = (segMax - segMin) / nSeg

for i = 0→ nSeg + 1 do
cutpoints[i] = min + step*i

end

for i = 0→ nSeg do
initialValues[i] = (cutpoints[i] + cutpoints[i+1]) / 2

end

foreach i ∈ initialV aluesX do
pointCounter.append(1)
pointCounterNew.append(1)
foreach j ∈ initialV aluesY do

foreach k ∈ initialV aluesZ do
meansAcc.append(i)
meansAcc.append(j)
meansAcc.append(k)
meansAccNew.append(i)
meansAccNew.append(j)
meansAccNew.append(k)

end

end

end

end
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Clustering Clustering is the processing stage of the algorithm that generates the clustered model.
Clustering occurs until global convergence is reached, which is kept track of using the stable variable.
Clustering happens in iterations and the goal is to reduce the number of iterations as much as
possible. This allows for a faster global convergence and reduces the required processing. At the
beginning of each iteration the kd-tree is built using buildKdTree and is stored in the kdTree variable.
kdTree is accessed through its root. Next, the meansAccNew and pointCounterNew variables are
cleared using clear, to begin an accumulation stage. Next, the points in the dataset are fed into
the tree for traversal using traverse, to find the nearest cluster to each of them so that it may be
accumulated. Once all of the points are accumulated, local convergence is checked for each cluster
using updateStability. The stable variable is then computed by ANDing the values of the stability
list. Clustering ends once stable = 1.

Algorithm 3: Clustering

Clustering():
stable = 0
while not stable do

kdTree = buildKdTree(meansAcc, pointCounter, 0, indices(pointCounter)
for i = 0→ length(pointCounterNew) do

if pointCounterNew[i] 6= 0 then
clear(i)

end

end

foreach point ∈ data do
clusterIndex = traverse(kdTree, point, 0, -1, 0)
meansAccNew[clusterIndex] += point // 3 accumulations

pointCounterNew[clusterIndex] += 1
end

for i = 0→ length(pointCounterNew) do
updateStability(i)

end

stable = &[stabilityList] // ANDing all of the list

end

Binning Once global convergence is reached, binning can occur. Binning can also occur separately
based on our second use case where the user inputs a point based on a pre-trained clustered model.
Binning occurs exclusively using the traverse method. The cluster index is then given as an output.

Algorithm 4: Binning

Binning():
foreach point ∈ data do

clusterIndex = traverse(kdTree, point, 0, -1, 0)
output(clusterIndex)

end
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Building the Kd Tree This method builds the kd-tree at the beginning of each iteration to
prepare it for point traversal. Since we avoid calculating centroid values (due to avoiding division),
we use the cluster accumulators and counters instead as the values of the tree nodes. Indices are
also stored in within the node so that they can be returned so that their corresponding clusters
can be accumulated. The axis value is propagated down the tree so that the correct computation
of the single-dimension distance value d can be performed. Therefore, axis can only be 0, 1, or
2 corresponding to the x, y, and z dimensions respectively. The first step is to sort the cluster
accumulators based on their values in the current axis. The axis is updated for the next dimension
and is propagated down the tree. The central cluster index is then determined. The left half the
sorted clusters up to the central cluster is then assigned the the current node’s left connection, and
the right half after the central cluster is assigned to the right connection. The current node’s internal
value D is assigned the central cluster. D will contain three values which are the accumulators,
the counter, and the index. Tree building is done recursively all the way down till only one cluster
remains as the central cluster, and this central cluster will represent a leaf node. Leaf nodes
have NULL left and right connections. In hardware, instead of recursive tree-building a user-
defined maximum depth tree will be synthesized and its internal node values will be updated at the
beginning of each iteration.

Algorithm 5: Building the Kd Tree

buildKdTree(accumulators, counters, axis, indices):
if length(counters) > 1 then

sort(axis) // sort accumulators, counters, and indices based on axis

axis = (axis + 1) % 3
half = length(counters) / 2
x = node() // nodes have left and right connections, as well as center

values that represent their cluster

x.left = buildKdTree(accumulators[:half*3], counters[:half ], axis, indices[:half ])
x.right = buildKdTree(accumulators[half*3:], counters[half:], axis, indices[half:])
x.D = [accumulators[half*3], counters[half], indices[half]]
return x

end
else if length(counters) == 1 then

x.left = NULL
x.right = NULL
x.D = [accumulators[0:3], counters[0], indices[0]]
return x // leaf nodes

end

Kd Tree Traversal Once a tree is built, points must traverse through it so that they can be
assigned to their correct nearest clusters, and this is done with traverse. One efficiency improvement
that we make in our implementation is the introduction of the user-defined hyperparameter ε
(epsilon). ε is an additive margin for the single-dimensional distance that reduces the number of
tree traversals for points. The tradeoff is that the misclassification percentage is increased by a
small margin. The nodes that the points traverse through have left and right connections, as well
as a value which is represented with D. D is a list of size 3 and stores the xyz accumulators at
index 0, the counter at index 1, and the cluster index at index 2. The first step during traversal
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is to calculate the distance metric, which in our case is the manhattan distance. This is calculated
using Equation 8. Next, the single-dimensional distance value d is calculated based on the current
axis value. If no prior value for bestDist was assigned, it is assigned the value of the current node
distance (root node). If the current dist value is less then the value of bestDist, bestDist is updated
with the dist value and bestIndex is updated to indicate that the current cluster is closer to the
point. Axis is then updated. Next, a binary value otherBranch is determined. otherBranch is an
indicator of whether the other branch should also be traversed to, after visiting and returning from
the first branch. This is based on a depth-first search approach. The first branch that should be
traversed to is determined based on the sign of d. If d is negative then the point traverses left, and
if it is positive the point traverses right. The binary value firstDirection is determined based on
the direction of the first traversal. A left-first traversal corresponds to a firstDirection value of 0,
and a right-first traversal corresponds to a firstDirection value of 1. If otherBranch is 1, the second
direction is also traversed to based on the prior determination of the value of firstDirection. The
algorithm ends once traversal is complete and the bestIndex is returned.
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Algorithm 6: Kd Tree traversal

epsilon = 50 // epsilon is a user-defined hyper-parameter that specifies an

additive margin for traversing one branch of the tree

traverse(node, point, axis, bestDist, bestIndex):
// node.D[0] => xyz accumulators, node.D[1] => counter, node.D[2] => index

if node 6= NULL then
dist = |node.D[1] ∗ point[0]− node.D[0][0]|+ |node.D[1] ∗ point[1]− node.D[0][1]|+
|node.D[1] ∗ point[2]− node.D[0][2]| // Manhattan distance without division

d = node.D[0][axis] - point[axis]*node.D[1] // Distance in the axis dimension

without division

if bestDist == −1 or dist < bestDist then
bestDist = dist
bestIndex = node.D[2]

end
axis = (axis + 1) % 3
otherBranch = |d|+ epsilon < bestDist
if d < 0 then

traverse(node.left, point, axis, bestDist, bestIndex)
// We traverse either the left or right branch depending on whether d

is positive or negative

firstDirection = 0

end
else

traverse(node.right, point, axis, bestDist, bestIndex)
firstDirection = 1

end
if otherBranch then

if not firstDirection then
traverse(node.right, point, axis, bestDist, bestIndex)

end
else

traverse(node.left, point, axis, bestDist, bestIndex)
end

end
return bestIndex

end

Clear At the start of a new iteration, the meansAccNew and pointCounterNew variables for all of
the clusters need to be cleared and this is done with clear. First however, meansAccNew is assigned
to meansAcc and pointCounterNew is assigned to pointCounter. This is because they are needed
for tree building and traversal, as well as to check the local convergence condition for each cluster.
After saving them, they are cleared so that they can be used for the upcoming iteration.
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Algorithm 7: Clearing cluster accumulators and counters

clear(index):
meansAcc[index*3:index*3 + 3] = meansAccNew[index*3:index*3 + 3]
pointCounter[index] = pointCounterNew[index]

// saving the accumulator and pointer values from the previous iteration

meansAccNew[index*3:index*3 + 3] = [0, 0, 0]
pointCounterNew[index] = 0

Update Stability updateStability is used to check local convergence, or stability, for each cluster.
This is checked through the accumulator values in each dimension. Alternatively, the pointCounter
value can also be checked but this might be unnecessary. If the absolute difference between meansAc-
cNew and meansAcc is below the user-defined threshold, then the cluster’s stability value within
the stabilityList is set to 1. Clustering ends once all of the values within stabilityList are 1.

Algorithm 8: Updating the stability list for each cluster

updateStability(index):
if |meansAccNew[index ∗ 3]−meansAcc[index ∗ 3]| < threshold
and
|meansAccNew[index ∗ 3 + 1]−meansAcc[index ∗ 3 + 1]| < threshold
and
|meansAccNew[index ∗ 3 + 2]−meansAcc[index ∗ 3 + 2]| < threshold then

stabilityList[index] = 1
end

Software results The verification results from the kd-tree method implemented within our golden
model were highly satisfactory. This can be seen visually in Figure 16 below. By comparing this
output with the one obtained in Figure 13, we can see that this method is much better in terms of
visual clustering quality.

Figure 16: Side by side comparison of the input image on the right and the segmented output
using kd-tree clustering. It can clearly be observed that the clustering quality from the segmented
image obtained using this method is much better than the clustering quality of the segmented image
obtained using the dimension separation method, which was shown in Figure 13.
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Figure 17 shows the silhouette coefficient histogram for the output image in Figure 16. The
average silhouette coefficient is 0.536 and the misclassification percentage is 4.2%. This is for an
initialization using three initial segments in each dimension. This further verifies that the kd-tree
method satisfies our quality requirements as the silhouette coefficient values are mostly very high,
and the misclassification percentage is very low (below 5%). The reason for the misclassification
is due to some of the correct clusters being filtered out during point traversal, but this happens
very rarely and is the trade-off for obtaining high efficiency. Misclassification is mostly apparent
with low data ranges and this is the case with images. Although it should also be noted that the
negative silhouette coefficient values are very low with most of them below 0.2 . This indicates that
the misclassified cases happened between clusters that were very close to each other which is often
an acceptable case. the misclassification tends to be between 0 and 1 for data ranges of 1000 or
more.

Figure 17: Silhouette coefficient histogram for the kd tree method corresponding to the output
image in Figure 16. The initial number of segments is 3 in each dimension. The average silhouette
coefficient is 0.536 and the point misclassification percentage is 4.2%.

Additionally we tested the algorithm with 1000 clusters for randomly generated data, the average
number of node visits was 60.935, which for n = 1000 is equal to 6 ∗ log2(n).

Once we recognized the efficiency and quality of the kd-tree method we went on to implement
it in hardware.
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6 Component’s Design and Micro Architecture

Coming into the hardware circuit design we had some guidelines that we needed to follow. The
first of these is that we did not want to use any global variables. This is because global variables
will have large fan-outs which is wasteful of resources and not a good design practise. Second, the
number of nodes within the kd-tree needed to be configurable at runtime. This is to allow the
user to edit their own parameters to get a tailored clustering result. Finally, we wanted to allow
more than one tree to be generated if this is allowable to provide parallel processing capabilities.
With that being said, we came up with a design that uses four modules in a hierarchical fashion.
These are the node, the processing element, the comparison element module, and the distance
module. In practise, the processing element is part of the node but here we explain its functionality
as an abstraction and consider that it is its own independent module. The KD tree is made up
of nodes, and each node contains a processing element and a comparison element. Comparison
elements contain a distance module. We provide the option to use either the manhattan distance
or the euclidean distance for the distance module. Note that for simplicity, the design is explained
assuming that we use division because this does not alter the circuit’s functionality. In practise,
the division avoidance is implemented and we perform this using inequality 3, and equations 8,
or 9. All of the verilog circuits were written, synthesized, and tested in Intel Quartus Prime. The
Cyclone V board was used for synthesis.
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6.1 KD Tree Structure in Hardware

Figure 18: Hardware structure of the kd-tree. The kd-tree is built from nodes and each node
contains a cluster processor element and a cluster comparison element.

The kd-tree hardware architecture, which is shown in Figure 18 is built so that is made up of
individual nodes where each node represents a cluster. The ParentExt and X1 to X8 connections
represent potential node connections to an external parent, and external children nodes. In practise
however, the tree will have a fixed maximum size (depending on the available hardware resources),
and the top-level node is the root and it is the tree’s access point. Data moving through the tree can
travel in a bidirectional fashion depending on a node’s current stage. The main algorithm stages are
initialization, sorting, and point propagation. The algorithm stages are outlined in greater detail in
Section 6.2. The processing and comparison elements will have different functions depending on the
current stage, as well as the commands being received to them from adjacent nodes. Transitioning
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from one stage to another happens when a stage’s end signal arrives to the root. This end signal
is detected, triggering the next stage’s signal that is given as a command back to the root. The
control circuit that triggers stage signals into the tree, and receives acknowledgements back from
the tree is referred to as the controlling circuit. The controlling circuit communicates directly to
the tree’s root.

To start the clustering process and begin the initialization stage, the center fill command is
given to the root and the initial clusters are entered through data in. Once all of the nodes have
centers in them, a center fill done command arrives back to the root triggering the sort signal. This
causes a transition to the sorting stage.

Sorting happens in multiple steps to ensure that each node is sorted within its own respective
axis. In other words, the first step is to fix the root by making sure it is the central value along
the x-axis. Then the next step is to fix the root’s left and right children, by making sure they are
the central values along the y-axis and between all nodes along the left and right side of the root
respectively. Bear in mind nodes to the left and right of the root are sorted independently from
one another. This sort propagation occurs all the way to the tree’s leaves and when the whole tree
is sorted, it transitions to the point propagation stage.

An input point arrives through data in during point propagation and is sent to the comparison
element. The comparison element decides whether to send the point to the left or to the right
depending on the value of single-dimension distance value d. The point will then traverse downwards
while the bestDist value and the cluster corresponding to it are kept track of. The point will
eventually return back to the original node that sent it in a specific direction. The node’s comparison
element will then determine whether the point needs to be sent to the other direction by comparing
the values of d and bestDist. Eventually, the point will return to the root with the nearest cluster
to it. The centroid value of this cluster will then propagate downwards in a manner similar to
broadcasting, and the cluster with a centroid equal to it will be accumulated. Accumulation is
done within the cluster processing element. Once all points have been accumulated, the cluster
centroids will be updated accordingly and a convergence check will be performed. If at least one
cluster has not converged, the signal to begin the next iteration is triggered. Note that sorting
needs to occur before each iteration because the updated clusters might have shifted and need to
be rearranged correctly. Otherwise if all of the clusters have converged, clustering ends and the
final converged clusters can be found within their respective nodes.

6.2 Algorithm Stages in Hardware

6.2.1 Initialization

In this stage, the node centers are initialized by being propagated from the root to the all of
the inner nodes until the leaves. The initial centers arrive to the root in a serial stream. Once
all of the leaves are filled and have centers within them, they send out center fill done signals to
their parents. These signals propagate all the way to the root, which will in turn send it to the
controlling circuit. The controlling circuit will then send out a start sorting as root signal to move
to the sorting stage.

6.2.2 Sorting

Sorting is an essential stage that prepares the tree and fixes its centers in preparation for the
point propagation stage. In our design we introduce a novel technique for sorting down the tree.
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The advantage to this technique is that non-adjacent node triplets can sort in parallel. This happens
through node comparisons with their neighbours until all nodes have stabilized. Sorting stability
between three nodes is achieved if the inequality Left < Parent < Right is satisfied. Additionally,
each inner node within the tree must ensure that it is greater than the rightmost leaf node below it,
and less than the leftmost leaf node below it. Once these two inequalities are satisfied for the whole
tree, the sorting stage can end. Sorting happens in multiple sub-stages and with varying axes down
the tree. The number of sub-stages is equal to the number of levels within the tree. The first level is
sorted and the root node is centered with respect to the X axis component, then the second level is
sorted and the root’s children are centered with respect to their Y axis components, then the third
level is sorted and the next children are centered with respect to their Z axis components, all the
way down until the leaf nodes are reached. At the beginning of each sort sub-stage, the sorting axis
is propagated downwards and this can be seen in Figure 19. Figure 20 shows how the sorting axes
vary with each sub-stage that alternate with each descent down the tree. Figures 21, 22, 23, and 24
show the detailed steps that occur in a single sorting sub-stage along the X axis. The red boxes
indicate the sorting operations that occur at the same time as each other, and the arrows indicate
the signals that coordinate comparison interactions between nodes. Note that not all signals are
shown in these diagrams for the sake of clarity.

Figure 19: Initializing the sorting axis down the tree.
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Figure 20: After sorting in one axis is complete for a node and its center is fixed for that axis, it
makes its direct children virtual roots for sorting so that they may also be fixed for the next axis’s
sorting stage.

Figure 21: Sorting stage example, steps 1-4.
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Figure 22: Sorting stage example, steps 5-8.

Figure 23: Sorting stage example, steps 9-12.
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Figure 24: Sorting stage example, steps 13-16.

6.2.3 Point Propagation

Point propagation is the main stage that occurs during clustering, and the purpose of it is to
find the nearest cluster to a point based on the distance metric, so that this resultant cluster may
be accumulated with the point. In our design, this happens in a depth-first based traversal. While
the point is propagating downwards, the best cluster value is kept track of. At any given node, if
the current best cluster distance is smaller than the distance component in a given axis of the node,
then the other branch of the node is not visited. This is the basis of the filtering technique and it
is highly effective in reducing the search space. Figure 25 shows an illustration of how this occurs
in practise.
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Figure 25: An example of the traversal sequence that occurs during point propagation. Note that
filtering is also shown here as the entire right side of the tree was not visited.
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6.3 Node - Command Handler

Figure 26: Cluster node architecture. The cluster node contains the command handler, the pro-
cessing element, and the comparison element. It also has register connections to its left and right
children as well as its parent. For each of these connections, it contains a data and command
register.

6.3.1 Design

The node module, which is shown in Figure 26, is the building block of the kd-tree and functions
based on the commands it receives which are dealt with in the command handler. Therefore, the
command handler is acts as the control unit for the node. Additionally the command handler can
send outgoing commands to adjacent nodes. The command handler is not a separate module but
instead is the central intrinsic control element within the node, and can also be considered to be
the node itself.

Commands and data can come from and go to four different places. These are the parent node,
the left-connected node, the right-connected node, and the node itself. To avoid control hazards,
we enforce a priority scheme for functional command flow. This scheme defines that the order of
descending priority of arriving commands to be dealt with is as follows: the node’s parent, the
node itself, the left-connected child, and the right connected child. This means that if two or
more conflicting commands arrive to the node, the only command that will be executed is the one
with the highest priority and all other commands will be ignored. A code snippet of how this is
implemented in hardware is shown below:
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1 always @(posedge clk) begin

2 if(command_from_top != nop)

3 case(command_from_top)

4 command 1:

5 ....

6 command n:

7 endcase

8 else if (self_command != nop)

9 case(self_command)

10 command 1:

11 ....

12 command n:

13 endcase

14 else if (command_from_left != nop)

15 case(command_from_left)

16 command 1:

17 ....

18 command n:

19 endcase

20 else if (command_from_right != nop)

21 case(command_from_right)

22 command 1:

23 ....

24 command n:

25 endcase

26 end

We define a set of 32 possible commands that the command handler accepts and sends, that
form the complete basis of the node’s functionality. Each of these commands has a unique opcode
corresponding to it. Table 3 below shows these commands with their functionality. The table
also includes columns indicating propagation (P), acknowledgement (A), and whether the signal is
internal or external (I/E). Propagation indicates that the signal propagates downwards within the
tree. Acknowledgement indicates that the signal has a corresponding acknowledgement signal that
must return to it from below. Internal signals are signals that are generated from within the tree
as a result of node interactions, and only stay within the tree. External signals are ones that are
issued from the controlling circuit.
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Table 3: All possible node commands and their functionality. The propagation (P) column indicates
whether the signal propagates downwards. The acknowledgement (A) column indicates whether
the signal requires an acknowledgement. The I/E column indicates whether the signal is internal
to the tree, or externally arriving from the controlling circuit.

Command P A I/E Description

rst Y Y E
Triggers the reset mechanism in the node. Receiving
node will propogate this command to its children. It
is sent by the controlling circuit.

rst done N N E
Triggered when all lower nodes have been reset. It is
the acknowledgement signal corresponding to rst and
is received by the controlling circuit.

center fill Y Y E
Initializes the node centroid. Node centroid
initialization down the tree is done serially. Serial
input centroids are sent by the controlling circuit.

center fill done N N E
Triggered when all lower nodes have been initialized.
It is the acknowledgement signal corresponding to
center fill and is received by the controlling circuit.

switch N N I

Internal command used in the sorting stage and is
triggered by a parent node within itself when it
detects that the condition left < parent < right
has been violated.

receive center N N I
Internal signal between nodes in the sorting stage
used to exchange centers.

busy N N I
Internal signal used in the sorting phase while
exchanging data. Prevents the interruption of the data
exchange.

dne N N I
Used to indicate the absence of a child connection
(either a left or a right child).

start sorting Y Y E
Sent by the controlling circuit to signal the beginning
of the sorting stage.

sort done N N E
Triggered when all nodes under the root have been
sorted. It is the acknowledgement signal
corresponding to start sorting.

ready to sort N N I
Internal command used in the sorting stage to signal
that the sending node is ready to switch centers with
its neighbours.

sort left validate N Y I
Internal command used in the sorting stage by the
parent of all nodes below it to make sure that its
value is greater than its left-most child.

sort right validate N Y I
Internal command used in the sorting stage by the
parent of all nodes below it to make sure that its
value is less than the right-most child.

valid sort N N I
Internal command used to signal that all lower nodes
are sorted.
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valid done N N I
Internal command sent by a child to its parent as
a result of it having received sort left validate
and sort right validate from its own children.

next sort level N N I
Internal command used after the completion of
sorting in one level to prepare the tree for sorting in
the next level.

start sorting as root N N E
Internal command used to set a node as the root of
a sorting stage. The number of sorting roots is
doubled with each step down tree.

point in as root N Y E
External command sent to the root node by the
controlling circuit to cluster a point.

point in with best Y Y I
Internal command used while propagating the point
and the current closest cluster in the tree.

return best N N E
Acknowledgement signal for point in as root
and point in with best. The return value of this
command is the current closest cluster to the point.

hold N N I

Internal command used in the sorting stage by a node
to freeze the centers of its children, when it needs to
switch centers with its parent. This is to prevent a
switching conflict between a parent-self switch and
a self-child switch.

get most left Y Y I
Internal command used in the sorting stage to return
the left-most child’s center to the sender node.

get most right Y Y I
Internal command used in the sorting stage to return
the right-most child’s center to the sender node.

set most left Y N I
Internal command used in the sorting stage to set the
left-most child’s center to a specific value.

set most right Y N I
Internal command used in the sorting stage to set the
right-most child’s center to a specific value.

nopme Y N E

Used to force all receiving nodes to set their
command to top to nop. This command must be
used by the external circuit after the clustering of a
point.

axis set inc Y N E

Sent by the external circuit to set the root’s axis. It is
used if the sorting stage is skipped and the tree is
already sorted correctly. This is useful when only
binning is required.

accumulate Y N E
Internal command sent by the root to all nodes. Only
the node with the same center as the arriving data
will be accumulated.

divide Y Y E
Command sent by the controlling circuit to divide the
accumulators and counters of each node. The division
result is stored in the new center register.

new iteration Y N E

Command issued by the controlling circuit to begin a
new iteration. This command will cause all nodes to
replace their center values with new center and then
clear the new center value.
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stable N N E
Command received by the controlling circuit to
indicate that the kd-tree is stable - global
convergence.

unstable N N E
Command received by the controlling circuit to
indicate that the kd-tree is unstable - has not reached
global convergence.

6.3.2 Verification

Verification of the node module was done by verifying the kd-tree as a whole. This is because
the functionality of the node module is dependant on its relationship to its adjacent nodes as well as
the current stage in the algorithm. Therefore, it has been verified in the verification of the kd-tree
structure in the kd tree.v testbench module. To generate the instantiation text for the testbench
a python program called ‘tree generator.py’ was developed. This program takes the input number
of nodes and returns the instantiation text with all of the necessary connections between these
nodes, so that it can be entered into the testbench accordingly. Debug messages were also inserted
at different stages within the actual node module so that analysing its operation can be more
convenient. The testbench was run on ModelSim and the waveforms were observed. The input
used was a standard image in hex format. The clustering output was then written to a text file and
was compared against the same output produced using the golden model. Once the two outputs
were seen to be the same, the circuit’s operation was deemed to be verified and correct.

6.3.3 Specifications

• 340 ALUTs.

• 139 registers.

• 297 LUTs.

• 32 possible commands.

• 5 bit command opcode.
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6.4 Processing Element

Figure 27: Architecture of the cluster processor. The cluster processor contains the old and new
center values, the xyz accumulators, and the point counter. Local convergence, or stability, is
checked from within the cluster processor.

6.4.1 Design

The cluster processing element, which is shown in Figure 27, is responsible for maintaining the
registers belonging to cluster within the node. These variables are the xyz accumulators, the point
counter, and the old and new centers. The cluster processor also receives points so that is may
accumulate them. Moreover, it receives childSwitch and parentSwitch commands for switching
with parent or child during the sorting stage. The cluster processor shown here is an abstraction
for simplicity. In practise, everything contained within this module can be accessed directly from
within the node.
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6.4.2 Verification

The cluster processor was verified using a individual testbench, which was cluster pe tb.v .
The reason for doing this was that the cluster processor can work independently if need be, so its
functionality can be tested independently as well. Since this functionality is also rather primitive,
comparing it with a separate golden model was not required. Verifying this module was a matter
of ensuring that it performs as required when it receives certain input signals. Operation was
eventually seen to be correct as is specified by the module’s required functionality in certain stages.

6.4.3 Specifications

• 72 registers.

• 4 LUTs.
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6.5 Comparison Element

Figure 28: Comparison element architecture. The comparison element does the comparisons nec-
essary for the sorting and point propagation stages. It also assigns the new parent, left, and right
center values during sorting based on custom logic computed from the A, B, and C results. Stability
in this context is an indication that the condition L < P < R is satisfied. The comparison element
also contains a distance module (either manhattan or euclidean), that computes the 3D distance
and the axis distance.
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6.5.1 Design

The comparison element is responsible for performing the comparisons necessary for the sorting
and point propagation stages. For sorting, it computes the values A, B, and C which are each
indicators of different violations of the condition Left < Parent < Right. The correctional outputs
new left, new parent, and new right are determined based on custom logic that uses A, B, and C.
A, B, and C, are also used to determine the switching commands for the left, parent, and right
connections.

For point propagation, the distance module is utilized. The distance module can compute either
the manhattan distance or the euclidean distance based on the user’s selection. In each of these
cases it provides the three-dimensional distance as well as the single-dimensional distance axis dist.
The value of axis dist is used in two scenarios. The first is in the determination of whether a point
should traverse left or right during the first traversal, and the second is in the determination of
whether the second branch needs to be visited. The output signals for each of these two cases are
first direction and other branch respectively.

6.5.2 Verification

Similar to the cluster processor, the cluster comparison element can also function independently
so a testbench was written to verify its results. This testbench is cluster ce tb.v . This testbench
includes violations of the fundamental condition between left, parent, and right (L < P < R). For
all of these violations, the results for new left, new parent, and new right were all verified to be
correct. Additionally, the module needed to be verified for its operation under point propagation.
This involved ensuring that the point is sent in the correct direction down the tree, and that the
decision of sending it to the other branch is also determined correctly and performed. On an
individual modular level, this was verified to be correct and the circuit’s operation was deemed to
valid according to its required functionality.

6.5.3 Specifications

• 42 LUTs.

• 3 DSP blocks.

7 Hardware Models - Results

For testing the hardware performance and synthesis results we needed to test two different
algorithmic improvements that we have introduced. These were division removal and kd-tree nearest
cluster search. Therefore we implemented four different versions of hardware clustering circuits.
The first of these was a pure sequential clustering circuit using linear nearest cluster search and
with division. The second was the same sequential implementation but without division. The third
was kd-tree clustering with division. Finally, the fourth was kd-tree clustering without division.
The synthesis results and timing analyses for each of these is presented. Additionally, the number
of cycles to cluster a specific image is also shown. Some of the hardware versions also have pipelined
versions that were designed. Also note that for the kd-tree results, one node is synthesized. For all
of the designed models, the distance metric used was the manhattan distance. All of the designed
models were synthesized using the settings of the Cyclone V FPGA. For throughput calculations,
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we assume K = 1000 clusters and a value of P = 24 bits for the point size (8 bits for each dimension,
3 dimensions). The throughput calculation also assumes the binning use case.

7.1 Sequential with Divider (Reference model)

The first version that was designed was the pure sequential search model with a divider. This
model was designed to be similar to how clustering algorithms run in software, and it did not have
any of the optimizations that we had proposed. Therefore, here we calculate the distance metric
for all of the clusters, and perform division. The search complexity in this version is O(K) where K
is the number of clusters. This is the baseline reference model with which all of the other improved
models will be compared. Synthesis results are shown in Figure 29. The maximum frequency result
in this model is 13.57 MHz. The throughput is calculated as follows:

T =
P ∗ f
2 ∗K

(11)

where P is the point size, f is the maximum frequency and K is the number of clusters. The
reason for the division by 2 is that we need two cycles (distance calculation, distance comparison
with minimum value), to perform the necessary computations in nearest cluster determination, for
a single cluster. We multiply by K because this is performed for all K clusters. Using the test
parameters outlined in Section 7, we obtain a throughput value of 0.1628 Mb/s.

Figure 29: Synthesis report of the baseline sequential model with a divider.
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7.2 Sequential with Pipelined Divider

This model is almost exactly the same as the reference model but differs in the divider. The
divider core configuration was changed so that it would be pipelined, allowing for 10 cycles before
a result is produced. The synthesis report is the same as in Figure 29, because the change was
only in the divider configuration. This gave a resultant output frequency of 65.9 MHz. Using
Equation 11 and the test parameters, the value of the throughput is 0.7908 Mb/s.

7.3 Sequential without Divider

The improvement made in this model is the removal of division. This was done using Equation 8
for the manhattan distance, and inequality 3 for point-cluster comparison. The synthesis report for
this model is shown in Figure 30. In this situation instead of dividing by two calculation stages as
was done in Equation 11, we divide by three because the distance calculation is instead split into
two stages. This is involves a pipeline separation of the multiplication and addition steps within
the calculation of the manhattan distance. Therefore the throughput equation becomes as follows:

T =
P ∗ f
3 ∗K

(12)

The resultant frequency is 83.16 MHz, and the throughput calculated using Equation 12 is
0.6653 Mb/s.
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Figure 30: Synthesis report of the sequential model without division.

7.4 Three-stage Pipelined Kd Tree with Pipelined Divider

This model was the first working implementation of a Kd-tree in hardware. It was designed
with the modules specified in Section 6. This version included a divider (10-stage pipelined), so
that we could have a baseline comparison for division removal. The synthesis report for this version
is shown in Figure 31. Pipelining was also introduced here in the comparison element. This was
done in three stages due to having three main computations that occur within the comparison
element. The first is the subtraction between the point and the centroid, the second is the absolute
value computation, and the third is the addition of all three dimensional values. Therefore the
throughput equation for this version becomes:

T =
P ∗ f

2 ∗ S ∗ log2(K)
(13)

where P is the point size, f is the maximum frequency, S is the number of pipeline stages, and
K is the number of clusters. Since the average case complexity of using a Kd-tree is O(log2(K)),
we use the log2 operator in the equation. A division of 2 is additionally introduced because our
hardware implementation requires traversal back to the root once the nearest cluster is found. The
maximum frequency result for the model was 114.94 MHz. Using Equation 13, the throughput
was calculated to be 46.1339 Mb/s.
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Figure 31: Synthesis report of the initial Kd tree hardware implementation model. This model
included a divider.

7.5 Three-stage Pipelined Kd Tree without Divider

This version is similar to the one that was outlined in Section 7.4, except that division was
removed from it using Equations 3 and 8. The synthesis report for this version is shown in Figure 32.
The maximum frequency for this model is 114.08 MHz. This resulted in a throughput of 45.7887
Mb/s using Equation 13.
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Figure 32: Synthesis report for the Kd tree hardware implementation that avoids division.

7.6 Kd-Tree with Pipelined Divider

In this Kd-tree version we include a pipelined divider but avoid pipelining the comparison
element. The advantage to this is the avoidance of dividing by number of pipeline stages in the
throughput equation. As a result, the throughput equation becomes as follows:

T =
P ∗ f

2 ∗ log2(K)
(14)

Note the absence of the S term here, in comparison to Equation 13.
The synthesis report is shown in Figure 33. The maximum frequency is 98.5 MHz. Using this

value and Equation 14, we get a throughput value of 118.6058 Mb/s.
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Figure 33: Synthesis report for the non-pipelined Kd tree hardware implementation with a pipelined
divider.

7.7 Overall Results

Design Version Frequency (MHz) Throughput (Mb/s)
1. Sequential with Divider 13.57 0.1628
2. Sequential with Pipelined Divider 65.90 0.7908
3. Pipelined Sequential without Divider 83.16 0.6653
4. Pipelined Kd Tree with Pipelined
Divider

114.94 46.1339

5. Pipelined Kd Tree without Divider 114.08 45.7887
6. Kd Tree with Pipelined Divider 98.5 118.6058

Table 4: Frequency and throughput results for all of the designed hardware versions.

The numerous hardware versions shown above were the result of many optimization phases
and continuous incremental improvements. The summary of their performance results during the
binning use case is shown in Table 4. One matter of note is that all of the hardware circuits
synthesized with very low resource utilization, and this can be seen in Figures 29, 30, 31, and 32.

The first improvement between the first and second version is pipelining the divider. This
resulted in an almost 5x gain in the throughput. This is mainly because the divider has a high
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latency so pipelining it will greatly increase the frequency. The next improvement (between model
2 and 3), was to remove the division and in this case the frequency improved but it did not result
in enough of an improvement in the throughout during binning. This is because of adding an
extra multiplication step during binning. Whether or not an improvement can be observed during
clustering is something that must further be investigated.

The next set of versions (4, 5, and 6), were based on using a Kd tree and it is clear that this
has provided a tremendous boost in the throughput. This is because of dividing by a log2(K)
term instead of K, which is because of the cluster filtering during tree traversal. When comparing
models 2 and 4, we observe an approximate throughput gain of 58. As for the comparison between
models 4 and 5, we find that during binning there is almost no improvement in the throughput
when avoiding division. This will most likely be observed during clustering, which is where the
divider will be used for every iteration. The most interesting observation is the consequence of the
removal of the pipelining stages between models 4 and 6. The point of interest is that while model
6 understandably had a lower frequency, the resultant throughput was higher. This indicates that
the higher frequency in model 4 was not enough to compensate for the additional number of cycles
prevalent due to pipelining the comparison element. If we also remove the divider in model 6, the
frequency and throughput results will most likely not change significantly, as was observed in the
difference in results between models 4 and 5.

Therefore we can conclude that for binning, model 6 was the most optimal out of all the design
versions. As was previously stated, further testing and experimentation will be required for the
clustering use case. This will be more complicated due to the variable nature of clustering, however
this can be overcome by taking average cases, looking deeper into the nature of the input data,
and observing the effects of varying the hyperparameters. Once a solid approach is formulated for
testing clustering, more concrete and final conclusions can be drawn. It must be noted that the
40 Gb/s ethernet requirement cannot be achieved at this stage, however this design can be scaled
for future work, to support multiple parallel trees processing simultaneously. This will allow the
throughput to be multiplied by the number of active processing trees which will in turn allow for
the achievement of a throughput of 40 Gb/s.

8 Conclusion

This senior design project report has addressed some of the problems associated with clustering
in hardware, and has proposed a novel hardware design as a solution. The hardware design was
based on the kd-tree approach which is a known efficient method for cluster filtration. New al-
gorithmic improvements were introduced through this design, which were primarily the avoidance
of division, the independent parallel sorting strategy, as well as the sub-box initialization method.
These improvements were based off of extensive theoretical work and iterative verification through
the utilization of a golden model that was implemented in software. The project targets were ac-
complished, as the results showed that the requirements were met within the physical hardware
constraints.

Despite the project’s accomplishments, further improvements can be made through future work
and experimentation. One of these is to find a way detect the shape of the data distribution so
that clusters are not initialized outside of it. Solving this problem will ensure that all clusters will
be assigned points and the empty cluster problem will be avoided. Furthermore, an actual network
component needs to be designed so that the system use cases can be tested practically. This will
require using cloud vendor services so that the clustering can be done for real data. One important
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aspect is also to test and verify the design’s operation on an actual FPGA. This will give us a more
accurate demonstration of how the system will function in a practical scenario. Finally, the parallel
tree processing strategy needs to be implemented so that the throughput is multiplied enough times
to meet the 40 Gb/s ethernet requirement.

Overall, many lessons were learned through iterative design and experimentation. Work on this
design was highly rewarding, especially when the practical results from theoretical improvements
were observed. We are satisfied with what we have accomplished in this project and hope to
continue improving on it to realize its manifestation as an actual commercial project.
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Appendix

All code associated with this project, including the commit history is found on the github
repository at: https://github.com/hsfalsharif/KMeansClusteringSW . The github also includes the
individual contributions of each member (hsfalsharif is Hamza, and nitrogar is Ahmad). The file
tree.py is the golden model. All of files and directories that are of importance to what we have
worked on are outlined in the README of the repository. All verilog code is found in the ‘verilog’
directory.
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